Transcatheter Aortic Valve Replacement

Scott M. Lilly, MD, PhD Associate Professor - Clinical Division of Cardiovascular Medicine The Ohio State University Wexner Medical Center

Aortic Stenosis Pathophysiology

- Pathophysiology for degenerative AS is similar to atherosclerosis.
- Involves inflammation/immune system activation, fibrosis and calcifications, etc
- Risk factors are shared, HTN, hyperlipidemia, tobacco use, sex
- Medical therapy that is shown to be effective for atherosclerosis is not effective for valve sclerosis

Pathophysiology of atherosclerosis

Patel, V., D. Chisholm., T. Dua, R. Laxminarayan, and M. E. Medina-Mora, editors. 2015. *Mental, Neurological, and Substance Use Disorders*. Disease Control Priorities, third edition, volume 4. Washington, DC: World Bank. doi:10.1596/978-14648-0426-7. License: Creative Commons Attribution CC BY 3.0 IGO

Aortic Stenosis Pathophysiology

- Changes in the LV result from increased afterload
- Initially LV hypertrophies, but overtime remodeling occurs leading to fibrosis and dilation, eventually decreased LVEF and heart failure
- Subendocardial ischemia due to transmural pressure gradient, exacerbated by concomitant CAD
- Increased LVEDP/filling pressures, pulmonary hypertension/edema, RV overload

A Novel Approach...

<u>Transcatheter</u> <u>A</u>ortic <u>V</u>alve <u>R</u>eplacement

PARTNER 3 Low Risk Trial

- Randomized trial (n=1328) comparing Edwards SAPIEN 3 vs. SAVR
- Symptomatic, severe, calcific AS
- Heart Team agrees patient has STS risk of mortality <4%
- Primary outcome: all cause mortality, all stroke, rehospitalization
- Patient follow-up at 30 days, 6 months, and annually through 10 years

Low Risk TAVR Trials Reported March 2019

Transcatheter versus Surgical Outcomes in Low Risk Trials		
Outcome	CoreValve	SAPIEN Valve
Death	Similar	Lower
Stroke	Lower*	Lower
Bleeding	Lower*	Lower*
Vascular Complication	Similar	Similar
Kidney Injury	Lower*	Similar
New Atrial Fibrillation	Lower*	Lower*
Pacemaker	Higher*	Similar
Rehospitalization	Lower*	Lower
Length of Stay	Shorter*	Shorter*
KCCQ/QOL Improvement	Higher* (30-d)	Higher*
Discharged Home		Higher*
Combined 12-month stroke and mortality was LOWER with TAVR compared to Surgical Valve Replacement		

Simulation

Self-Expandable (SE)

- Crimping TAV
- Delivering TAV to prescribed position
- Releasing TAV by gradually removing sheath

Balloon-Expanding (BE)

- TAV and balloon are already crimped and positioned in prescribed location.
- Balloon is gradually inflated, expanding TAV and pushing away native leaflets.

Goal: To estimate the final Distance between native/bioprosthetic Leaflet and Coronary ostium (DLC) and Area available for Coronay Flow (ACF) after TAVR

Conclusions

- TAVR is here to stay, more common than surgical approach in U.S.
- Procedural and device developments will continue to provide improvements in outcomes

Patient-specific models and simulation can inform therapy

These therapies rely on multidisciplinary care

•

